Towards a carbon independent and CO2-free electrochemical membrane process for NH3 synthesis.
نویسندگان
چکیده
Ammonia is exclusively synthesized by the Haber-Bosch process starting from precious carbon resources such as coal or CH4. With H2O, H2 is produced and with N2, NH3 can be synthesized at high pressures and temperatures. Regrettably, the carbon is not incorporated into NH3 but emitted as CO2. Valuable carbon sources are consumed which could be used otherwise when carbon sources become scarce. We suggest an alternative process concept using an electrochemical membrane reactor (ecMR). A complete synthesis process with N2 production and downstream product separation is presented and evaluated in a multi-scale model to quantify its energy consumption. A new micro-scale ecMR model integrates mass, species, heat and energy balances with electrochemical conversions allowing further integration into a macro-scale process flow sheet. For the anodic oxidation reaction H2O was chosen as a ubiquitous H2 source. Nitrogen was obtained by air separation which combines with protons from H2O to give NH3 using a hypothetical catalyst recently suggested from DFT calculations. The energy demand of the whole electrochemical process is up to 20% lower than the Haber-Bosch process using coal as a H2 source. In the case of natural gas, the ecMR process is not competitive under today's energy and resource conditions. In future however, the electrochemical NH3 synthesis might be the technology-of-choice when coal is easily accessible over natural gas or limited carbon sources have to be used otherwise but for the synthesis of the carbon free product NH3.
منابع مشابه
Synthesis, Antimicrobial and Electrochemical Studies of Four Substituted Isatin Derivatives at a Glassy Carbon Electrode
Isatins, derivatives of indole, represent important class of compounds belonging to nitrogen heterocycles. These compounds comprise synthetically vital substrates that are used as precursors for drug synthesis and raw materials for heterocycles etc. Research in this group of compounds has engrossed interest among scientific community in recent and past as Isatins are known to possess immense bi...
متن کاملPolyvinylidene Fluoride Hollow Fiber Membrane Contactor Incorporating Surface Modifying Macromolecule for Carbon Dioxide Stripping from Water
Porous surface modified polyvinylidene ïuoride (PVDF) hollow fiber membranes are fabricated through a dry-wet phased inversion process. Surface modifying macromolecules (SMM) (1 wt. %) are used as additives in the spinning dope. The performance of the surface modified membrane in contactor application for CO2 stripping from water is assessed through the fabricated gas–liquid membrane contacto...
متن کاملImproving the efficiency of electrochemical CO2 reduction using immobilized manganese complexes.
Immobilization of [Mn(bpy)(CO)3Br], (1) and [Mn(bpy((t)Bu)2)(CO)3Br] (2, where (bpy((t)Bu)2) = 4,4'-di-tert-butyl-2,2'-bipyridine) in Nafion/multi-walled carbon nanotubes (MWCNT) on glassy carbon yielded highly active electrodes for the reduction of CO2 to CO in aqueous solutions at pH 7. Films incorporating have significantly improved selectivity towards CO2, with CO : H2 ∼ 1 at -1.4 V vs. SCE...
متن کاملModeling and Experimental Study of Carbon Dioxide Absorption in a Flat Sheet Membrane Contactor
comIn the present study, CO2 removal from natural gas stream has been studied using a flat sheet membrane contactor. A three dimensional mathematical model is developed to describe the process. The model considers the transport of a gas mixture containing carbon dioxide and methane through a flat sheet membrane contactor module. The model is based on the non-wetted mode of operation, in which t...
متن کاملElectrochemical Study of Hydrogen Adsorption/Reduction (HAR) Reaction on Graphene Oxide as Electrocatalyst for Proton Exchange Membrane Fuel Cells
In the current work, graphene oxide (GO) samples were prepared at room temperature from graphite flakes using a modified Hummer's method to produce metal-free electrocatalysts. The effect of the duration of the oxidation process on the structural, chemical and physical characteristics of the GO samples was evaluated using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 16 13 شماره
صفحات -
تاریخ انتشار 2014